

Extensive Application For Destruction Of Various Hazardous Items By DAVINCH Lite System With High Mobility

Atsushi Sugiyama*, Masahiko Sugimoto KOBE STEEL, Ltd.

- DAVINCH Lite system with high mobility
- Application of DAVINCH Lite
 - Destruction test for hazardous items
 - Nerve agents
 - Smoke agents
 - Conventional ammunition
 - > Explosive capacity
 - Examples of donor charge assembly design and cycle time
- Further development
- Summary

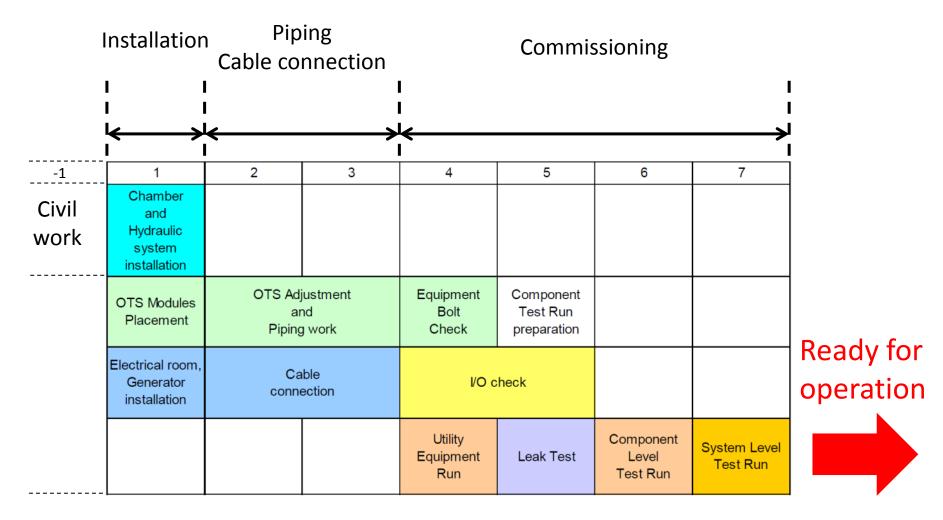
- DAVINCH Lite system with high mobility
- Application of DAVINCH Lite
 - Destruction test for hazardous items
 - Nerve agents
 - Smoke agents
 - Conventional ammunition
 - > Explosive capacity
 - Examples of donor charge assembly design and cycle time
- Further development
- Summary

DAVINCH Lite with high mobility

New DAVINCH system "DAVINCH Lite" has been constructed with high mobility.

Outrigger function to install detonation chamber without a crane

AVINE MOBELO


20ft containers for off-gas treatment module to make transport and installation easier

DAVINCH Lite with high mobility

Duration of deployment is estimated to be 7 days based on the demonstration in Japan.

- DAVINCH Lite system with high mobility
- Application of DAVINCH Lite
 - Destruction test for hazardous items
 - Nerve agents
 - Smoke agents
 - Conventional ammunition
 - > Explosive capacity
 - Examples of donor charge assembly design and cycle time
- Further development
- Summary

Target of destruction

DAVINCH Lite can be applied to destruction of various hazardous items.

Destruction tests with DAVINCH Lite has been carried out.

Chemical agents

DA, DC GB (surrogate)

HD, L VX (surrogate)

Phosgene

Hazardous materials

White phosphorous

HC (Smoke)

Conventional ammunitions

Munition with heavy steel shell

Red: Test target

Black: experienced

with DAVINCH

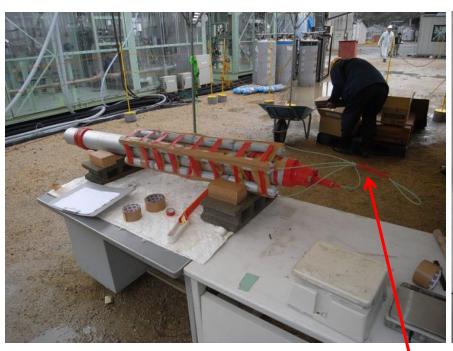
HC: Hexachloroethane

Destruction test: Surrogates of Nerve agents

Specification of M55 rocket

substances	fill weight	size and specification	material
GB	9.3 lb (5 Kg)	1.98m L x 115mm O.D. with burster and propellant	aluminum
VX	9.3 lb (5 Kg)	1.98m L x 115mm O.D. with burster and propellant	aluminum

Specification of simulated ammunitions for M55 rocket


surrogate	fill weight	size and specification	material
DMMP (for GB)	5.3 lb (2.4Kg) +Ethylene Glycol 5.0 lb (2.3Kg)	1.6m L x 110mm O.D. with burster and propellant	aluminum
Malathion (for VX)	5.8 lb (2.65 Kg) +(Xylene + Ethylbenzen) 5.8lb+2.65Kg)	1.6m L x 110mm O.D. with burster and propellant	aluminum

DMMP: Dimethyl methylphosphonate

Preparation

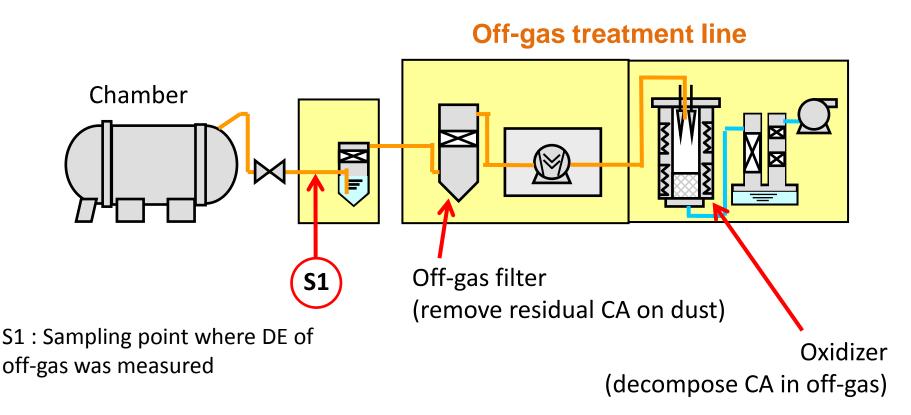
Donor charge was placed on 4 lines along the body with detonating cord to make simultaneous detonation for implosion.

Detonating cord

After detonation

Simulated ammunition was completely destroyed.

White particle: aluminium oxide


Residue quantitation results of the tests High Destruction Efficiencies are achieved.

Result		unit	2013/12/18	2013/12/19	
		Result	unit	DMMP	Malathion
Residue G	as(S1)	Volume	Nm3	24.14	30.07
		Concentration	mg/Nm3	0.0001	0.00001
		Quantity	mg	0.0024	0.0003
D.	ust	Total Weight	kg	8.98	16.26
		Concentration	mg/kg	0.001	1.8
		Quantity	mg	0.009	29.268
Li	iquid	Volume	L	1.0	1.0
		Concentration	mg/L	0.0001	0.00029
		Quantity	mg	0.0001	0.00029
W	Vipe	Surface Area	m2	120.4	120.4
		Quantity/Area	mg/m2	2.33333E-11	2.74833E-10
		Quantity	mg	2.8E-09	3.3E-08
O	thers		mg	0	0
Sı	ummary		mg	0	29
Destruction E	∃TT1C1@nCV	(Gas+Liquid+Solid+Wipe) for reference	%	99.9999995%	99.9989%
Destruction E	Efficiency	(Gas only)	%	99.9999999%	99.99999999%

Process flow diagram of DAVINCH Lite

DAVINCH Lite has back-up equipment for reduction of residual chemical agents.

WP and HC smoke

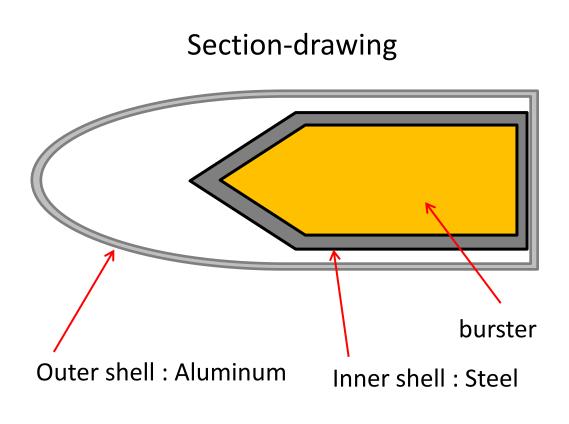
KOBELCO KOBE STEEL GROUP

Simulated smoke ammunitions

Simulated ammunition with white phosphorus

Inside of chamber after detonation

Amount of residual WP in chamber or off-gas line: very small


Simulated ammunitions was destroyed successfully without smoke generation for both WP and HC.

Conventional ammunition

Destruction test of conventional ammunition Simulated for Warhead of missile

Conventional ammunition

Conventional ammunition with heavy steel shell was successfully destroyed.

Donor charge setting (C4 explosive)

Steel shell was well destructed into small fragments.

- DAVINCH Lite system with high mobility
- Application of DAVINCH Lite
 - > Destruction test for hazardous items
 - Nerve agents
 - Smoke agents
 - Conventional ammunition
 - Explosive capacity
 - Examples of donor charge assembly design and cycle time
- Further development
- Summary

Explosive capacity

Detonation proof test

Explosion of 30kg TNT-eq. was successfully contained.

DAVINCH Lite is feasible for 24kg TNT-eq. with 25% margin

#	Date	Type of Explosive	Explosive Weight (kg)	Weight TNT eq (kg)	Note
1	3 Dec	Emulsion	18.8	15	
2	5 Dec	Emulsion	32.4	25.9	
3		Emulsion	39	31.2	
4	17 Dec	TNT	15.2	15.2	
5		TNT	22.8	22.8	
6	25 Dec	TNT	30.4	30.4	

- DAVINCH Lite system with high mobility
- Application of DAVINCH Lite
 - > Destruction test for hazardous items
 - Nerve agents
 - Smoke agents
 - Conventional ammunition
 - > Explosive capacity
 - Examples of donor charge assembly design and cycle time
- Further development
- Summary

Examples of donor charge assembly

Orientation of setting 155mm Projectile

Donor charge (emulsion explosive)

11

155mm
Projectile

5

Detonating cord

Explosives (TNT eq.)

Inner energetic: 0.2kg

Donor charge : 19.3kg

Total amount: 19.5 kg TNT eq.

(NEQ)

Explosives (TNT eq.)

Inner energetic: 1.2kg

4.2" Mortar

4.2'Mortar

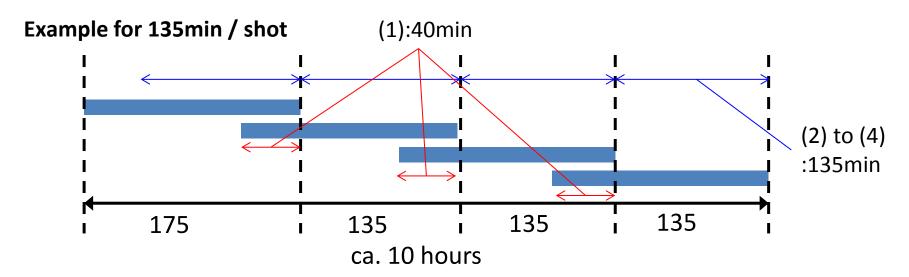
4.2'Mortar

Donor charge: 19.5kg

Total amount: 20.7 kg TNT eq.

(NEQ)

Typical cycle time


(1) Preparation of ammunition : 40 min

(2) Installation to chamber : 45 – 55 min

(3) Detonation & off-gas treatment : 60 min

(4) After detonation : 20 min

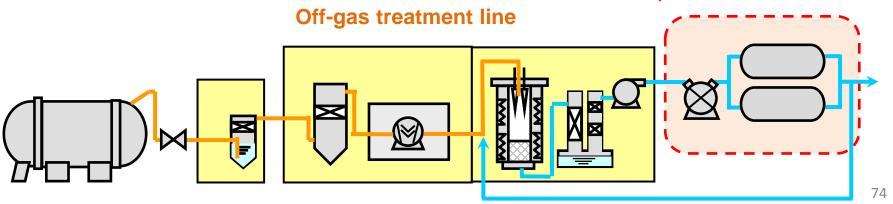
Cycle time : **125 - 135 min / shot**

Throughput: 4 shots / day (10hour)

 $(135 \times 4 + 40 = 580 \text{ min } / 4 \text{ shot})$

- DAVINCH Lite system with high mobility
- Application of DAVINCH Lite
 - > Destruction test for hazardous items
 - Nerve agents
 - Smoke agents
 - Conventional ammunition
 - > Explosive capacity
 - Examples of donor charge assembly design and cycle time
- Further development
- Summary

Further development



Further development for operability of DAVINCH Lite is being planned.

- Reduction of cycle time
 - Higher throughput of off-gas treatment
 - Development of Oxidizer

- Assurance of much secured environmental emission
 - ➤ Hold, Check & Release system

Hold, Check & Release unit

- DAVINCH Lite system with high mobility
- Application of DAVINCH Lite
 - > Destruction test for hazardous items
 - Nerve agents
 - Smoke agents
 - Conventional ammunition
 - > Explosive capacity
 - Examples of donor charge assembly design and cycle time
- Further development
- Summary

Summary

- DAVINCH Lite has been proved to be able to destroy various hazardous items through destruction performance tests.
 - ✓ Surrogates of nerve agents
 - ✓ Smoke ammunitions
 - ✓ Conventional ammunitions
- Donor charge orientation design and operation time have been estimated. DAVINCH Lite can destroy chemical ammunitions with high throughput.

In addition, DAVINCH Lite has;

- > 7 days deployment
- Planning further development

Application of DAVINCH Lite is widely extended.