Processing of Rocket Motors at the Anniston Static Detonation Chamber (SDC)

June 2015

Presented to:

CWD

Presented by:

Tim Garrett Anniston Site Project Manager

A Partnership for Safe Chemical Weapons Destruction

Armament Research Development and Engineering Center received M67 rocket motor assemblies from Blue Grass Chemical Activity to be tested for safety in storage

- (23) M28 propellant grains were removed from the rocket motor assemblies, cut and analyzed

These were sent to Anniston for processing in the Static Detonation Chamber (SDC)

- To determine processing parameters
- To obtain emissions data
- To gain initial information as to whether the SDC is a possible option for M67 rocket motor processing

- M28 Rocket Motor Grains
 - 19.35 pounds with Inhibitor Layer
 - 18.07 NEW without Inhibitor Layer
 - Class 1.3 Explosive

Anniston Field Office

Anniston Field Office

A Partnership for Safe Chemical Weapons Destruction

M28 Propellant: Nominal Composition

- 60% Nitrocellulose (NC)
- 23.8% Nitroglycerin (NG)
- 9.9% Triacetin
- 2.6% Dimethylphthalate
- 2.0% Pb Stearate
- 1.7% 2-Nitrodiphenylamine (2-NDPA)

Inhibitor Layer

- 70-74% Cellulose Acetate
- 26-30% Dimethylphthalate

M28 Rocket Motor Propellant – Test Objectives

- Objective 1 Following the pre-determined initial feed and ramp up plans, demonstrate the maximum size of an M28 propellant grain increment that can be fed to the Static Detonation Chamber (SDC) and Off-Gas Treatment (OGT) Systems without reaching (1) system parameter limits, (2) a feed limiting quantity of a constituent within the material, or (3) the TNTe limit
- Objective 2 Demonstrate the ability of the SDC and OGT Systems to process M28 propellant grain increments without incurring repeated temperature, pressure, or other alarms
- Objective 3 Demonstrate the ability of the SDC and OGT Systems to process M28 propellant grain increments and not be precluded from feeding by the generation of Carbon Monoxide above permit limit
- Objective 4 Determine the effects on various components throughout the SDC and OGT Systems that are uniquely associated with the processing of M28 propellant grain increments

- Each grain was cut into 4 pieces
- 80 total pieces fed
- Weights fed ranged from 1.24 pounds to 6.60 pounds with inhibitor
 - 1.16 pounds to 6.16 pounds Net
 Explosive Weight
 without inhibitor

- Ramp up on March 2, 2015
 - Total number of pieces fed 12
 - Total feed of 52.04 pounds
 - 10 second destruction timer

Feed Per Tray in Pounds							
Feed	Pounds	Feed	Pounds				
1	1.37	6	6.45				
2	3.15	7	5.88				
3	6.41	8	6.42				
4	6.34	9	6.39				
5	6.38	10	3 25				

- Maximum Parameters Observed During Ramp Up
 - Chamber Pressure: 24.36 psi
 - Thermal Oxidizer Pressure: 0.058 psi
 - Thermal Oxidizer Temperature: 1890°F
 - Temperature of Off-Gas Piping: 625.91°F
 - Maximum Carbon Monoxide instantaneous: 3.52 parts per million volume

- Test Feed on Day 1, March 3, 2015
 - 5.71 pounds to 6.55 pounds
 - Total feed 113.8 pounds _
 - 10 minute destruction timer

	Feed Per Tray in Pounds					
Feed	Pounds	Feed	Pounds			
1	6.44	10	6.37			
2	6.35	11	6.49			
3	5.71	12	6.48			
4	6.26	13	6.47			
5	6.37	14	5.87			
6	6.57	15	6.55			
7	6.43	16	6.29			
8	6.34	17	6.47			
9	5.91	18	6.43			

- Maximum Parameters Observed During Test 1
 - Chamber Pressure: 11.95 psi
 - Thermal Oxidizer Pressure:
 0.064 psi
 - Thermal Oxidizer Temperature: 1892°F
 - Temperature of Off-Gas Piping: 629.9°F
 - Maximum Carbon Monoxide instantaneous: 4.27 ppmv

- Test Feed on Day 2, March 4, 2015
 - 3.19 pounds to 6.60 pounds
 - Total feed of 161.64 pounds
 - 6 minute destruction timer

	Feed Per Tray in Pounds			Feed Per Tray in Pounds			
Feed	Pounds	Feed	Pounds	Feed	Pounds	Feed	Pounds
1	6.48	9	6.35	17	6.48	25	6.43
2	5.91	10	3.19	18	5.74	26	6.47
3	6.46	11	3.34	19	6.57	27	6.39
4	6.29	12	6.53	20	5.59	28	6.60
5	6.45	13	5.91	21	6.48	29	4.46
6	640	14	6.49	22	6.46		
7	6.01	15	6.34	23	6.37		
8	6.31	16	6.27	24	5.86		

- Maximum Parameters **Observed During Test 2**
 - Chamber Pressure: 10.33 psi
 - Thermal Oxidizer Pressure: 0.063 psi
 - Thermal Oxidizer Temperature: 1889°F
 - Temperature of Off-Gas Piping: 638°F
 - Maximum Carbon Monoxide instantaneous: 5.15 ppmv

Inside of Detonation chamber after Test 2 (Pipe sections added for weight)

M28 Rocket Motor Propellant – **Processing Results**

- **Objective 1** Following the pre-determined initial feed and ramp up plans, demonstrate the maximum size of an M28 propellant grain increment that can be fed to the Static Detonation Chamber (SDC) and Off-Gas Treatment (OGT) Systems without reaching (1) system parameter limits, (2) a feed limiting quantity of a constituent within the material, or (3) the TNTe limit
- Test Results: Feed of the M28 propellant grain increments was demonstrated during the ramp-up period at a maximum charge of 6.16 pounds NEW/feed event, just below the 6.61 pounds NEW/feed event TNTe limit
- **Objective 2** Demonstrate the ability of the SDC and OGT Systems to process M28 propellant grain increments without incurring repeated temperature, pressure, or other alarms
- Test Result: Feed occurred without generating any alarms

M28 Rocket Motor Propellant – Processing Results

- Objective 3 Demonstrate the ability of the Static Detonation Chamber (SDC) and Off-Gas Treatment (OGT) Systems to process M28 propellant grain increments and not be precluded from feeding by the generation of Carbon Monoxide (CO) above the permit limit
- Test Results: Generation of CO above the permit limit during a feed event did not occur
 - The highest CO value was 5.15 ppmv that occurred during Run 2
 - The permit limit is 100 ppm
- Objective 4 Determine the effects on various components throughout the SDC and OGT Systems that are uniquely associated with the processing of M28 propellant grain increments
- **Test Results**: No abnormal effects were incurred for the SDC or OGT Systems

A Partnership for Safe Chemical Weapons Destruction

- Preliminary Emissions Data for Test 1, March 3, 2015
 - Total CDD/CDF 0.017 ng-TEQ/dscm@7% O2 (Permit Limit 0.20)
 - Chloride Equivalents -1.06 ppmv@7% O2 (permit Limit 21)
 - Particulates .00068 gr/dscf @7% O2 (permit limit 0.013)
 - Arsenic, Beryllium and Chromium 5.41 ug/dscm@7% O2 (permit limit 23)
 - Cadmium and Lead 2.19 ug/dscm@7% O2 (permit limit 10)
 - Mercury 9.83 E-07 ug/dscm@7% O2 (permit limit 8.1)
 - No Energetics Detected
 - Highest Semi-Volatile Organic Detected Benzoic Acid at 1.17 E-05 g/s (no permit limits for Semi-Volatile Organics)
 - Highest Volatile Organic Detected Chloromethane at 5.82 E-05 g/s (no permit limits for Volatile Organics)

dscf: dry standard cubic foot dscm: dry standard cubic meter ppm: parts per million

A Partnership for Safe Chemical Weapons Destruction

- Preliminary Emissions Data for Test 2, March 4, 2015
 - Total CDD/CDF 0.019 ng-TEQ/dscm@7% O2 (permit Limit 0.20)
 - Chloride Equivalents -0.94 ppmv@7% O2 (permit Limit 21)
 - Particulates .00059 gr/dscf @7% O2 (permit limit 0.013)
 - Arsenic, Beryllium and Chromium 4.51 ug/dscm@7% O2 (permit limit 23)
 - Cadmium and Lead 2.84 ug/dscm@7% O2 (permit limit 10)
 - Mercury -9.52 E-07 ug/dscm @7% O2 (permit limit -8.1)
 - No Energetics Detected
 - Highest Semi-Volatile Organic Detected Benzoic Acid at 1.43 E-05 g/s (no permit limit for Semi-Volatile Organics)
 - Highest Volatile Organic Detected Bromomethane at 1.27 E-05 g/s (no _ permit limit for Volatile Organics)

dscf: dry standard cubic foot dscm: dry standard cubic meter ppm: parts per million

Testing Method Protocols

A Partnership for Safe Chemical Weapons Destruction

US Environmental Protection Agency (EPA) Method 4 - Moisture for the isokinetic sampling trains,

- SW-846 Method 0010 Semivolatile organic compound emissions,
- SW-846 Method 0023A Total dioxin/furan emissions,
- SW-846 Method 0031 Volatile organic compound emissions,
- US EPA Method 5/26A Acid gases and particulate matter emissions,
- US EPA Method 29 Metal emissions, and
 - US EPA Modified Method 5 Energetic emissions also called STEM

Anniston Field Office

- **Path Forward**
 - Pursue Testing with increasing NEW increments up to an entire M67 rocket motor