Updated Design of DAVINCH Detonation Chamber and Its New Application

CWD 2015 at London
June 5th 2015

Koichi Hayashi
Takao Shirakura

Kobe Steel, Ltd.
Presentation outline

General
 History of chemical agent destruction
 DAVINCH system advantages
Design scheme of DAVINCH system
 Example analysis (implosion, blast wave, structural)
Improvement (structural, operability, and analysis model)
Analysis model verification
New Application of DAVINCH system
 High explosive munition and missile
 A novel small chamber for urban area
History of chemical agent destruction by Kobe steel, Ltd.

 1.1 Kussharo; neutralization (chemical agent), detonation (burster)
 1.2 Samukawa; neutralization (chemical agent), incineration (soil)
 1.3 Kanda; detonation (chemical munition)
 1.4 China; detonation (chemical munition and canister)
 1.5 Belgium; detonation (chemical and conventional munition)

2. Plan, test, operation and improvement
 2.1 Basic design technology on critical items such as Nuclear
 2.2 Experience of testing and operation of actual chemical agent
 2.3 Accumulation of operation data
 2.4 Lesson learned by operation
 2.5 Improvement for updated design
DAVINCH system advantages

1. Destruction capabilities
 1.1 Large munitions
 1.2 Various type of chemical agent
 1.3. Deformed / Corroded non- stockpiles

2. No need for pretreatment

3. High destruction efficiency

4. High throughput

5. Environmental Friendly

6. Transportable

7. Applicable to conventional munitions
Design scheme of DAVINCH system

1. Design requirement of DAVINCH
 1.1 Structural integrity
 1.1.1 Outer chamber ; ASME pressure vessel code
 1.1.2 Inner chamber ; Fragments damage
 1.2 Operational and maintenance feasibility

2. Design software
 2.1 Implosion analysis
 2.2 Blast wave analysis
 2.3 Structural analysis
 2.4 High velocity deformation analysis
Implosion analysis model of mortars with donor charges

1. Implosion analysis
 1.1 Confirm the pressure of the chemical agent reaching to the specified value
 1.2 Confirm the fracture of the structure of munition
2. Operation and/or test
 Obtain the actual data
3. Lesson learned and improvement
 Reflect on the updated design with most suitable donor charge arrangement on amount and configuration
Implosion analysis

Pressure history of mortars implosion with donor charges
Blast wave analysis in the chamber

TNT60Kg

7msec after detonation
Blast wave reaches to the cylindrical part of the inner chamber

28msec after detonation
Blast wave reaches to the outer chamber
ASME code design
Impulsively loaded pressure vessel

The four failure modes specified in ASME Code SEC.VIII Div.3 and Code Case 2564 are evaluated by analysis*1 and/or experimental test*2

<table>
<thead>
<tr>
<th>Design Issue</th>
<th>ASME Code Requirement</th>
<th>Assessment Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Plastic Instability State *1</td>
<td>Code Case 2564-3 Section 3.1 (a)</td>
<td>No plastic instability state observed from detonation loads with 175% of TNT 60kg and TNT 75kg</td>
</tr>
<tr>
<td>Leak Before Burst *1</td>
<td>SectionⅧ Division 3 Article KD-140</td>
<td>Assumed initial flaw at worst location in outer vessel ,leak-before-burst mode of failure could be shown</td>
</tr>
<tr>
<td>Local Plastic Strain Limit 12</td>
<td>Code Case 2564-3 Section 3.1 (a)</td>
<td>Total accumulated damage at any point in the chamber under the specified operation cycles meets ASME Code requirement</td>
</tr>
<tr>
<td>Fatigue Strength 12</td>
<td>SectionⅧ Division 3 Article KD-3</td>
<td>Detonation Chamber has sufficient fatigue strength for a life term under the specified operation cycles</td>
</tr>
</tbody>
</table>
Structural analysis

1. Global Plastic Instability
No plastic instability state (the formation of the complete plastic hinge around opening)

Equivalent Plastic Strain Distribution in the Section of Lid Side Flange
(175% of design capacity)

2. Local strain limit
Residual plastic strain at Bottom Head (TNT60Kg)

3. Fatigue evaluation
Strain time history at Bottom Head (TNT 60Kg)
Updated DAVINCH chamber configuration

- Outer chamber
- Inner chamber
- Lid Head
- N1 Nozzle
- Buffer plates
- Bottom Head
- Support Frame
- Support Leg
- Spacer
- Stopper
Improvement of structural design

1. Structural design improvement
 1.1 Nozzle orientation
 1.2 Head shape
 1.3 Saddle reinforcement
 1.4 Buffer plates between O/I chambers
 1.5 Clamping system
 1.5.1. Bolting type to hydraulic cylinder type
 1.5.2. From self standing to being incorporated in the chamber
 1.6 Structure to minimize the inner chamber movement

2. Performance improvement
 2.1 Lower strain of critical points
Improvement of analysis model

Analysis model modification reflecting the operation and test data

There is a deficiency between test data and previous analysis model. The following improvements of the analysis model result in the better coincidence.

1. Refined the mesh size of around the discontinuity location such as welding
2. Refined evaluation cycle time to be same as test
3. Considered the effect of the strain change rate and hardening of the material

The experimental data (strain history)

Critical point; Outer shell to saddle

The analytical data original

The analytical data improved
Analysis model verification

The experimental test data of updated DAVINCH chamber shows the good coincidence with the analytical result with improved analytical model.

Figure. The peak strain data of critical location of updated DAVINCH Chamber (Estimated; analytical data, Measured; experimental data)
Improvement of operability

1. Reduce the risk to enter into the confinement area

 - The moving deck and robotic (Transport the munition and hang it on the hook)
 - Magnet lifter (Remove the fragment after detonation)
 - Robot (Complete the detonation circuit)

2. Prevent the dust dispersion

 - Shroud (Keep the dust in it when the Lid is opened)
 - Roll curtain (Keep the air flow rate higher when the Lid is opened)

These special tools and equipment are applied according to the site requirements
New Application of DAVINCH system (1/2)

High explosive munition and missile

1. Advantage of other application of DAVINCH system
 1.1 Closed system
 1.2 Low risk of transportation

2. Required structural integrity of DAVINCH chamber
 2.1 Blast wave and air tightness for outer chamber
 2.2 Fragment damage to the inner chamber
 (special attention to this requirement)
 2.2.1 High velocity deformation analysis
 2.2.2 High velocity impact test
New Application of DAVINCH system\(^{(1/2)}\)
High explosive munition and missile

1. Operation process
Setting the donor charge onto munition to detonate the munition explosive

2. Purpose of evaluation
Investigate the implosion behavior of the munition and the inner chamber and minimize the damage and extend the life by most suitable amount and arrangement of donor charge.

The velocity and direction of fragments after explosion of H.E. using donor charge will be obtained by the calculation and analysis.

Figure. Example of high explosive war head destruction behavior
The depth and diameter of the deformation of the inner chamber by the fragment will be investigated by the calculation and analysis using the data of the fragment size and velocity analyzed. This analysis model and the obtained result are reviewed and verified by comparison with the actual operation or experimental data.
New Application of DAVINCH system (2/2)
A novel small chamber for urban area

DAVINCH chamber technology can be applied to a novel small chamber with following performances appropriate for the problem in the urban area for defusing, transportation and temporary storage of UXO.

1. Mounted on the 3 ton truck. (limited size and weight)
2. A feasible handling supporting system.
3. Structural integrity when unintentional explosion occurred
 3.1 No collapse by the blast wave
 3.2 No penetration by the munition fragment
 3.3 Blast wave effect through clutch door satisfies the requirements of the safety standard for human and glass
New Application of DAVINCH system (2/2)
A novel small chamber for urban area

3.1 No collapse by blast wave

Pressure distribution (Blast wave analysis)

Equivalent plastic strain history

Analyzed strain is expected to be less than braking strain (1.10), so no fracture is observed.

3.2 No penetration by the munition fragment

Analysis model of explosion of munitions

High velocity deformation analysis

The penetration by fragment will not be observed by test in some conditions
New Application of DAVINCH system (2/2)
A novel small chamber for urban area

3.3 Blast wave effect through clutch door satisfies the requirements of the safety standard for human and glass

Deformation analysis for structure

Blast wave experiment and analysis with estimated gap

Deformation analysis for clutch door to estimate the expected gap after detonation

The safety standard of DOD6065.9 is satisfied at designated location.
Pressure shall be below followings
1) Window Glass (big size); 0.45KPa
2) Ear drum; 21KPa
3) Lung; 103KPa
Summary

1. Kobe Steel, Ltd. has 15 years’ experience for chemical agent destruction and has accumulated a substantial volume of test and operation data.

2. The lessons learned data is reflected not only on the hardware design of the DAVINCH system but also on the software design scheme including an analysis model.

3. The improved design scheme established in the DAVINCH system has been applied the development of a novel small chamber for the urban areas.